Sample Question Paper

CLASS: XII

Session: 2021-22 Mathematics (Code-041)

Term - 1

Time Allowed: 90 minutes Maximum Marks: 40

General Instructions:

- 1. This question paper contains **three sections A, B and C**. Each part is compulsory.
- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. There is no negative marking.
- 6. All questions carry equal marks.

SECTION - A

In this section, attempt any 16 questions out of Questions 1 – 20. Each Question is of 1 mark weightage.

1.	$\sin\left[\frac{\pi}{3}-\sin^{-1}\left(-\frac{1}{2}\right)\right]$ is equal to:	1
	a) $\frac{1}{2}$ b) $\frac{1}{3}$	
	c) -1 d) 1	
2.	The value of k (k < 0) for which the function f defined as $f(x) = \begin{cases} \frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2}, & x = 0 \end{cases}$ is continuous at $x = 0$ is:	1
	a) ± 1 b) -1 c) $\pm \frac{1}{2}$ d) $\frac{1}{2}$	
3.	If A = $[a_{ij}]$ is a square matrix of order 2 such that $a_{ij} = \begin{cases} 1, & when \ i \neq j \\ 0, & when \ i = j \end{cases}$, then A ² is:	1
	a) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ b) $\begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix}$	
	c) $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$ d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
4.	Value of k , for which $A = \begin{bmatrix} k & 8 \\ 4 & 2k \end{bmatrix}$ is a singular matrix is:	1
	a) 4 b) -4 c) ±4 d) 0	

5.	increasing:	inction f given by f (x) = $x^2 - 4x +$	- 6 is strictly 1
	a) (- ∞, 2) ∪ (2, ∞)	b) (2, ∞)	
	c) $(-\infty, 2)$	d) (− ∞, 2]∪ (2, ∞)	
6.	Given that A is a square matrix equal to:	of order 3 and A = - 4, then ac	dj A is 1
	a) -4 c) -16	b) 4 d) 16	
7.		defined as R = $\{(1, 1), (1, 2), (2, 2)\}$ pair in R shall be removed to make	
	a) (1, 1)	b) (1, 2) d) (3, 3)	
8.	c) (2, 2) If $\begin{bmatrix} 2a+b & a-2b \\ 5c-d & 4c+3d \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 11 & 24 \end{bmatrix}$	d) (3, 3) , then value of a + b - c + 2d is:	1
	a) 8 c) 4	b) 10 d) -8	
		,	
9.	The point at which the normal to the line $3x - 4y - 7 = 0$ is:	the curve $y = x + \frac{1}{x}$, $x > 0$ is perp	pendicular to 1
	a) (2, 5/2)	b) (±2, 5/2)	
10.	c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equ	d) (1/2, 5/2)	1
10.	Sill (tall x), where $ x < 1$, is equ	ai to.	'
	a) $\frac{x}{\sqrt{1-x^2}}$		
	$\sqrt{1-x^2}$	b) $\frac{1}{\sqrt{1-x^2}}$	
	c) $\frac{1}{\sqrt{1-x^2}}$	b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$	
11.	c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A =		
11.	c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = b is a multiple of 4}. Then [1], the	d) $\frac{x}{\sqrt{1+x^2}}$ { $x \in Z : 0 \le x \le 12$ }, given by R = { ne equivalence class containing 1	
11.	c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A =	d) $\frac{x}{\sqrt{1+x^2}}$ { $x \in Z : 0 \le x \le 12$ }, given by R = {	
11.	c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = b is a multiple of 4}. Then [1], then [1	d) $\frac{x}{\sqrt{1+x^2}}$ $\{x \in Z : 0 \le x \le 12\}$, given by R = { e equivalence class containing 1 b) $\{0, 1, 2, 5\}$	
11.	c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = b is a multiple of 4}. Then [1], then [1	d) $\frac{x}{\sqrt{1+x^2}}$ $\{x \in Z : 0 \le x \le 12\}$, given by R = { e equivalence class containing 1 b) $\{0, 1, 2, 5\}$	
	c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = b is a multiple of 4}. Then [1], then a) $\{1, 5, 9\}$ c) ϕ If $e^x + e^y = e^{x+y}$, then $\frac{dy}{dx}$ is:	d) $\frac{x}{\sqrt{1+x^2}}$ $\{x \in Z : 0 \le x \le 12\}, \text{ given by R} = \{x \in Z : 0 \le x \le 12\}, given by R$, is:
	c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = b is a multiple of 4}. Then [1], then a) $\{1, 5, 9\}$	d) $\frac{x}{\sqrt{1+x^2}}$ $\{x \in Z : 0 \le x \le 12\}$, given by R = { e equivalence class containing 1 b) $\{0, 1, 2, 5\}$, is:
	c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = b is a multiple of 4}. Then [1], then a) $\{1, 5, 9\}$ c) ϕ If $e^x + e^y = e^{x+y}$, then $\frac{dy}{dx}$ is:	d) $\frac{x}{\sqrt{1+x^2}}$ $\{x \in Z : 0 \le x \le 12\}, \text{ given by R} = \{x \in Z : 0 \le x \le x \le 12\}, \text{ given by R} = \{x \in Z : 0 \le x \le 12\}, \text{ given by R} = \{x \in Z : 0 \le x \le 12\}, \text{ given by R} = \{x \in Z : 0 \le x \le 12\}, \text{ given by R} = \{x \in Z : 0 \le x \le 12\}, \text{ given by R} = \{x \in Z : 0 \le x \le 12\}, \text{ given by R} = \{x \in Z : 0 \le x \le 12\}, \text{ given by R} = \{x \in Z : 0 \le x \le 12\}, \text{ given by R} = \{x \in Z : 0 \le x \le x \le x \le 12\}, \text{ given by R} = \{x \in Z : 0 \le x \le$, is:

13.	Given that matrices A and B are order of matrix C = 5A +3B is:	e of order 3×n and m×5 respectively, then the	1
	a) 3×5 and m = n	b) 3×5	
	c) 3×3	d) 5×5	
14.	If $y = 5 \cos x - 3 \sin x$, then $\frac{d^2y}{dx^2}$	is equal to:	1
	a) - y	b) y	
	c) 25y	d) 9y	
15.	For matrix $A = \begin{bmatrix} 2 & 5 \\ -11 & 7 \end{bmatrix}$, $(adjA)$	' is equal to:	1
	$\begin{bmatrix} -11 & 7 \end{bmatrix}$, $\begin{bmatrix} -2 & -5 \end{bmatrix}$		
	a) $\begin{bmatrix} -2 & -5 \\ 11 & -7 \end{bmatrix}$	b) $\begin{bmatrix} 7 & 5 \\ 11 & 2 \end{bmatrix}$	
	c) $\begin{bmatrix} 7 & 11 \\ -5 & 2 \end{bmatrix}$	d) $\begin{bmatrix} 7 & -5 \\ 11 & 2 \end{bmatrix}$	
		, [11 2]	
16.	The points on the curve $\frac{x^2}{a} + \frac{y^2}{16}$	= 1 at which the tangents are parallel to y-	1
	axis are:		
	a) (0,±4)	b) (±4,0)	
	a) $(0,\pm 4)$ c) $(\pm 3,0)$	d) (0, ±3)	
17.	_	matrix of order 3×3 and $ A = -7$, then the	1
	value of $\sum_{i=1}^{3} a_{i2}A_{i2}$, where A_{ij} d	enotes the cofactor of element a_{ij} is:	
	a) 7	b) -7	
	c) 0	d) 49	
18.	If $y = \log(\cos e^x)$, then $\frac{dy}{dx}$ is:		1
	a) $\cos e^{x-1}$	b) $e^{-x}\cos e^x$	
10	C) $e^x \sin e^x$	d) $-e^x \tan e^x$	1
19.	which point(s) is the objective fu	ion as the feasible region in the graph, at unction Z = 3x + 9y maximum?	I
	Y		
	↑ ****		
	25		
	D(0,20) 15 $C(15,15)$		
	(0.10)	50.00	
	(0,10) 5 $+$ $B(5,5)$ X' 0 5 $+$ 20 35 50	60,0) X	
	V'	x + 3y = 60	
	$(10,0) \begin{array}{c} 4 \\ x + y = 10 \end{array}$		
	a) Point B	b) Point C	
	c) Point D	d) every point on the line	
		segment CD	

20.		= $2\cos x + x$ in the closed interval $\left[0, \frac{\pi}{2}\right]$	1
	is:		ı
	a) 2	b) $\frac{\pi}{6} + \sqrt{3}$	ı
	C) $\frac{\pi}{2}$	d) The least value does not	ı
	, 2	exist.	
	SECTI	<u>ON – B</u>	
		estions out of the Questions 21 - 40.	
	Each Question is o	of 1 mark weightage.	
21.	The function $f: R \rightarrow R$ defined as $f(x)$	$= x^3$ is:	1
	a) One on but not onto	h) Not one one but ente	ı
	a) One-on but not ontoc) Neither one-one nor onto	b) Not one-one but onto d) One-one and onto	ı
00	,	,	4
22.	If $x = a \sec \theta$, $y = b \tan \theta$, then $\frac{d^2y}{dx^2}$ at θ	$\theta = \frac{\pi}{6}$ is:	1
	2.701	2.51	ı
	a) $\frac{-3\sqrt{3}b}{a^2}$ c) $\frac{-3\sqrt{3}b}{a}$	b) $\frac{-2\sqrt{3}b}{a}$ d) $\frac{-b}{3\sqrt{3}a^2}$	ı
		d) $\frac{-b}{3\sqrt{3}a^2}$	ı
			ı
23.	Y In the given o	graph, the feasible region for a LPP is	1
	shaded.	, ap.,, a.eeae.a.eeg.ee. a. <u>_</u> e	
		function $Z = 2x - 3y$, will be minimum	ı
	at:		ı
	(0, 8)		ı
	(6, 5)		ı
			ı
			ı
			ı
	(0,0) (5,0)		ı
) (6, 8)) (6, 5)	ı
24.	The derivative of $\sin^{-1}(2x\sqrt{1-x^2})$ w.		1
		$\lambda, \frac{1}{\sqrt{2}} < \lambda < 1, 13.$	ı
	a) 2 b) $\frac{\pi}{2}$	- 2	ı
	a) 2 b) $\frac{\pi}{2}$ c) $\frac{\pi}{2}$ d) -2		ı
25.			1
	$\begin{bmatrix} 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 2 \end{bmatrix}$	-4] .	
	If $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 \\ -4 & 2 \\ 2 & -1 \end{bmatrix}$	-4 , then:	İ
			l
		$A^{-1} = 6B$	l
	c) _{B-1} = B	I) $B^{-1} = \frac{1}{2}A$	

d) $B^{-1} = \frac{1}{6}A$

- a) Strictly increasing in $(-\infty, -2)$ and strictly decreasing in $(-2, \infty)$
- b) Strictly decreasing in (-2,3)
- c) Strictly decreasing in $(-\infty, 3)$ and strictly increasing in $(3, \infty)$
- d) Strictly decreasing in $(-\infty, -2) \cup (3, \infty)$

Simplest form of $\tan^{-1}\left(\frac{\sqrt{1+cosx}+\sqrt{1-cosx}}{\sqrt{1+cosx}-\sqrt{1-cosx}}\right)$, $\pi < x < \frac{3\pi}{2}$ is: 27.

۵)	π	x
a)	4	2

b)
$$\frac{3\pi}{2} - \frac{x}{2}$$

c)
$$-\frac{x}{2}$$

d)
$$\pi - \frac{x}{2}$$

Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then value 28. 1 of |2A| is:

	a)	4

29. The value of b for which the function f(x) = x + cosx + b is strictly decreasing over R is:

1	

1

1

a)	b	<	1	

b) No	value	of b	exists

c)
$$b \leq 1$$

d)
$$b \ge 1$$

30. Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$, then:

		_					
	a)		(2,	4)	\in	R
	C)		1	R	ጸነ	<u>_</u>	R

31.

The point(s), at which the function f given by $f(x) = \begin{cases} \frac{x}{|x|}, x < 0 \\ -1, x \ge 0 \end{cases}$ is continuous, is/are:

a)	$x \in R$

b)
$$x = 0$$

c)
$$x \in R - \{0\}$$

d)
$$x = -1$$
 and 1

If $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then the values of k, a and b respectively 32. are:

1

	a) -6, -12, -18	b) -6, -4, -9	
	c) -6, 4, 9	d) -6, 12, 18	
33.	A linear programming problem is as fo	llows:	1
	Minimize Z = 30x + 50y		
	subject to the constraints,		
	$3x + 5y \ge 15$		
	$3x + 3y \le 13$ $2x + 3y \le 18$		
	$x \ge 0, y \ge 0$		
		Jun of 7 appure of	
	In the feasible region, the minimum va		
	a) a unique point b)	•	
	c) infinitely many points d)	two points only	
34.	The area of a trapezium is defined by	function f and given by $f(x) = (10 +$	1
	$(x)\sqrt{100-x^2}$, then the area when it is		
	a) 75 <i>cm</i> ²	b) $7\sqrt{3}cm^2$	
	,	d) $5cm^2$	
	c) $75\sqrt{3}cm^2$	u) 5cm-	
35.	If A is square matrix such that $A^2 = A$,	then $(I + A)^3 - 7$ A is equal to:	1
00.	ii 7 13 Square matrix such that 7 = 7,	then (117) 7713 equal to.	•
	a) A	b) I + A	
	a) A c) I – A	d) I	
36.	If $tan^{-1} x = y$, then:	- /	1
	, ,		
	a) $-1 < y < 1$	b) $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$	
	c) $\frac{-\pi}{2} < y < \frac{\pi}{2}$	d) $y \in \{\frac{-\pi}{2}, \frac{\pi}{2}\}$	
	$\int \int \frac{1}{2} \langle y \rangle \frac{1}{2}$	$u_j y \in \{\frac{1}{2}, \frac{1}{2}\}$	
37.	Let A = {1 2 3} B = {4 5 6 7} and le	$f = \{(1, 4), (2, 5), (3, 6)\}$ be a function	1
	from A to B. Based on the given inform		•
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	a) Surjective function	b) Injective function	
	c) Bijective function	d) function	
38.	For A = $\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, then 14A ⁻¹ is given b	/	1
	For $A = \begin{bmatrix} 1 & 2 \end{bmatrix}$, then 14A is given b	у.	
	a) $14\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$	b) $\begin{bmatrix} 4 & -2 \\ 2 & 6 \end{bmatrix}$	
	11 3 1	1, 15, 61	
	Γ2 —11	[_3 _1]	
	c) $2\begin{bmatrix} 2 & -1 \\ 1 & -3 \end{bmatrix}$	d) $2\begin{bmatrix} -3 & -1 \\ 1 & -2 \end{bmatrix}$	
	-1 3-		
39.	The point(s) on the curve $y = x^3 - 11x$	x + 5 at which the tangent is $y = x - 11$	1
	is/are:	- ,	
) (2, -9)	
	c) $(\pm 2, 19)$) (-2, 19) and (2, -9)	
40.	Given that $A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ and $A^2 = 3I$, th	en·	1
	$[\gamma -\alpha]^{\alpha + \alpha}$	O.1.	

a) $1 + \alpha^2 + \beta \gamma = 0$	b) $1 - \alpha^2 - \beta \gamma = 0$	
c) $3 - \alpha^2 - \beta \gamma = 0$	d) $3 + \alpha^2 + \beta \gamma = 0$	

SECTION - C

In this section, attempt any 8 questions. Each question is of 1-mark weightage. Questions 46-50 are based on a Case-Study.

41.	For an objective function $Z = ax + by$, where $a, b > 0$; the corner points of	1
	the feasible region determined by a set of constraints (linear inequalities) are	
	(0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the	
	maximum Z occurs at both the points (30, 30) and (0, 40) is:	

a) $b - 3a = 0$	b) $a = 3b$
c) $a + 2b = 0$	d) $2a - b = 0$

42. For which value of m is the line y = mx + 1 a tangent to the curve $y^2 = 4x$?

a) $\frac{1}{2}$	b) 1
c) 2	d) 3

43. The maximum value of $[x(x-1)+1]^{\frac{1}{3}}$, $0 \le x \le 1$ is:

a) 0	b) $\frac{1}{2}$
c) 1	d) $\sqrt[3]{\frac{1}{3}}$

44. In a linear programming problem, the constraints on the decision variables x and y are $x - 3y \ge 0, y \ge 0, 0 \le x \le 3$. The feasible region

a) is not in the first	b) is bounded in the first
quadrant	quadrant
c) is unbounded in the	d) does not exist
first quadrant	

45. Let $A = \begin{bmatrix} 1 & \sin\alpha & 1 \\ -\sin\alpha & 1 & \sin\alpha \\ -1 & -\sin\alpha & 1 \end{bmatrix}$, where $0 \le \alpha \le 2\pi$, then:

a) A =0	b) $ A \in (2, \infty)$
c) $ A \epsilon (2,4)$	d) $ A \epsilon [2,4]$

CASE STUDY

The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at speed 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour.

Assume the speed of the train as v km/h.

1

1

	Based on the given information,	answe	er the following questions.		
46.	Given that the fuel cost per hour is k times the square of the speed the train generates in km/h, the value of k is:		1		
	a) $\frac{16}{3}$		b) $\frac{1}{3}$		
	c) 3		d) $\frac{3}{16}$		
47.	If the train has travelled a distant the train is given by function:	ce of 5		of running	1
	a) $\frac{15}{16}v + \frac{600000}{v}$		b) $\frac{375}{4}v + \frac{600000}{v}$		
	$c) \ \frac{5}{16}v^2 + \frac{150000}{v}$		d) $\frac{3}{16}v + \frac{6000}{v}$		
48.	The most economical speed to run the train is:		1		
	a) 18km/h	-) 5km/h		
40	c) 80km/h	d			4
49.	The fuel cost for the train to trave			speed is:	1
	a) ₹3750		₹ 750		
	c) ₹7500	<u>d</u>)			
50.	The total cost of the train to travel 500km at the most economical speed is:		1		
	a) ₹3750	b)	₹ 75000		
	c) ₹7500	d)	₹ 15000		

Marking Scheme

Mathematics (Term-I)

Class-XII (Code-041)

Q.N.	Correct	Hints / Solutions
1	Option d	
1	a	$\sin\left(\frac{\pi}{3} - \left(\frac{-\pi}{6}\right)\right) = \sin\left(\frac{\pi}{2}\right) = 1$
2	b	$\lim_{x \to 0} \left(\frac{1 - \cos kx}{x \sin x} \right) = \frac{1}{2}$
		$\Rightarrow \lim_{x \to o} \left(\frac{2\sin^2 \frac{kx}{2}}{x \sin x} \right) = \frac{1}{2}$
		$\Rightarrow \lim_{x \to 0} 2 \left(\frac{k}{2}\right)^2 \left(\frac{\sin\frac{kx}{2}}{\frac{kx}{2}}\right)^2 \left(\frac{x}{\sin x}\right) = \frac{1}{2}$
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
3	d	$\Rightarrow k^2 = 1 \Rightarrow k = \pm 1 \text{ but } k < 0 \Rightarrow k = -1$ $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
4	C	As A is singular matrix
-	C	ASA = 0
		· ·
5	b	$\Rightarrow 2k^2 - 32 = 0 \Rightarrow k = \pm 4$ $f(x) = x^2 - 4x + 6$
		f'(x) = 2x - 4
		$let f'(x) = 0 \Rightarrow x = 2$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		as $f'(x) > 0 \forall x \in (2, \infty)$
6	d	⇒ $f(x)$ is Strictly increasing in $(2, \infty)$ as $ adj A = A ^{n-1}$, where n is order of matrix A
	u	$= (-4)^2 = 16$
7	b	(1,2)
8	а	$2a+b=4$ \ $a=1$
		$\begin{vmatrix} a-2b=-3 \\ 5c-d=11 \end{vmatrix} \Rightarrow \begin{vmatrix} b=2 \\ c=3 \end{vmatrix}$
		$ \begin{vmatrix} 5c - a = 11 \\ 4c + 3d = 24 \end{vmatrix} $ $ \begin{vmatrix} c = 3 \\ d = 4 \end{vmatrix} $
9	а	$\therefore a + b - c + 2d = 8$
	.	$f(x) = x + \frac{1}{x}, x > 0 \Rightarrow f'(x) = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2}, x > 0$
		As normal to $f(x)$ is \bot to given line
		$\Rightarrow \left(\frac{x^2}{1-x^2}\right) \times \frac{3}{4} = -1 \ (m_1. m_2 = -1)$
		$\Rightarrow x^2 = 4 \Rightarrow x = \pm 2$
		But $x > 0$, $\therefore x = 2$
		Therefore point= $\left(2, \frac{5}{2}\right)$
10	d	$\sin(\tan^{-1} x) = \sin\left(\sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)\right) = \frac{x}{\sqrt{1+x^2}}$
11	а	$\{1,5,9\}$
12	С	$e^x + e^y = e^{x+y}$
		$\Rightarrow e^{-y} + e^{-x} = 1$
		Differentiating w.r.t. x:

		$\Rightarrow -e^{-y}\frac{dy}{dx} - e^{-x} = 0 \Rightarrow \frac{dy}{dx} = -e^{y-x}$		
13	b	3×5		
14	а	$y = 5\cos x - 3\sin x \Rightarrow \frac{dy}{dx} = -5\sin x - 3\cos x$		
		$\Rightarrow \frac{d^2y}{dx^2} = -5\cos x + 3\sin x = -y$		
15	С			
		$\operatorname{adj} A = \begin{bmatrix} 7 & -5 \\ 11 & 2 \end{bmatrix} \Rightarrow (adjA)' = \begin{bmatrix} 7 & 11 \\ -5 & 2 \end{bmatrix}$		
16	С	$\left \frac{x^2}{9} + \frac{y^2}{16} \right = 1 \Rightarrow \frac{2x}{9} + \frac{2y}{16} \frac{dy}{dx} = 0$		
		\Rightarrow slope of normal $=\frac{-dx}{dy}=\frac{9y}{16x}$		
		As curve's tangent is parallel to <i>y</i> -axes		
		$\Rightarrow \frac{9y}{16x} = 0 \Rightarrow y = 0 \text{ and } x = \pm 3$		
		$\therefore points = (\pm 3, 0)$		
17	b	A = -7		
10	d	$ \therefore \sum_{i=1}^{3} a_{i2} A_{i2} = a_{12} A_{12} + a_{22} A_{22} + a_{32} A_{32} = A = -7 $		
18	a	$y = \log(\cos e^x)$ Differentiating wrt x :		
		$\frac{dy}{dx} = \frac{1}{\cos(e^x)}. (-\sin e^x). e^x \text{ (chain rule)}$		
		$\Rightarrow \frac{dy}{dx} = -e^x \tan e^x$		
19	d	Z is maximum 180 at points <i>C</i> (15,15) and <i>D</i> (0, 20).		
	ŭ	⇒ Z is maximum at every point on the line segment CD		
20	С	$f(x) = 2\cos x + x , x \in [0, \frac{\pi}{2}]$		
		$f'(x) = -2\sin x + 1$		
		$Let f'(x) = 0 \Rightarrow x = \frac{\pi}{6} \in [0, \frac{\pi}{2}]$		
		f(0) = 2		
		$f\left(\frac{\pi}{6}\right) = \frac{\pi}{6} + \sqrt{3}$		
		$f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} \implies \text{least value of } f(x) \text{ is } \frac{\pi}{2} \text{ at } x = \frac{\pi}{2}$		
		Section-B		
21	d	$let f(x_1) = f(x_2) \forall x_1 x_2 \in R let f(x) = x^3 = y \forall y \in R$		
		$\Rightarrow x_1^3 = x_2^3 \\ \Rightarrow x = y^{\frac{1}{3}}$		
		$\Rightarrow x_1 = x_2$ $\Rightarrow f$ is one - one every image $y \in R$ has a unique pre image in R		
		$\Rightarrow f$ is onto		
		∴ f is one-one and onto		
22	а	$x = a \sec \theta \Rightarrow \frac{dx}{d\theta} = \arctan \theta \sec \theta$		
		$y = b \tan \theta \Rightarrow \frac{dy}{d\theta} = b \sec^2 \theta$		
		$\therefore \frac{dy}{dx} = \frac{b}{a} cosec\theta$		
		$\Rightarrow \frac{d^2y}{dx^2} = \frac{-b}{a} cosec\theta \cdot cot\theta \cdot \frac{d\theta}{dx} = \frac{-b}{a^2} cot^3\theta$		
		$\left[\therefore \frac{d^2 y}{dx^2} \right]_{\theta = \frac{\pi}{2}} = \frac{-3\sqrt{3}b}{a^2}$		
23	С	Z is minimum -24 at (0, 8)		
24	а	let $u = \sin^{-1}(2x\sqrt{1-x^2})$		
	1			

and $v = sin^{-1}x$, $\frac{1}{\sqrt{2}} < x < 1 \Rightarrow sin v = x(1)$ Using (1), we get: $\frac{sin^{-1}(2) sin v \cos v}{2}$ $\Rightarrow u = 2v$ Differentiating with respect to v, we get: $\frac{du}{dv} = 2$ 25 d $AB = 6I \Rightarrow B^{-1} = \frac{1}{6}A$ 26 b $f'(x) = 6(x^2 - x - 6) = 6(x - 3)(x + 2)$ $\frac{-c_{(i_1)}}{-c_{(i_1)}} = \frac{1}{2}(-3)$ $\frac{-c_{(i_1)}}$					
Using (1), we get: $= sin^{-1}(2 \sin v \cos v)$ $\Rightarrow u = 2v$ Differentiating with respect to v, we get: $\frac{du}{dv} = 2$ 25 d $AB = 6I \Rightarrow B^{-1} = \frac{1}{6}A$ 26 b $f'(x) = 6(x^2 - x - 6) = 6(x - 3)(x + 2)$ $\xrightarrow{-\infty} AS f'(x) < 0 \forall x \in (-2, 3)$ $\Rightarrow f(x) \text{ is stirctly decreasing in } (-2, 3)$ 27 a $\tan^{-1}\left(\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}+\sqrt{1-\cos x}}\right)$ $= \tan^{-1}\left(\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}+\sqrt{1-\cos x}}\right)$ $= \tan^{-1}\left(\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}+\sqrt{1-\cos x}}\right)$ $= \tan^{-1}\left(\frac{\cos \frac{x}{2} + \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}}\right)$ $= \frac{\pi}{4} \frac{x}{2}$ 28 c $A^2 = 2A$ $\Rightarrow A^2 = 2A $ $\Rightarrow A^2 = A 2 $ $\Rightarrow A^2 = A $ $\Rightarrow A^2 = A^2 $ $\Rightarrow A^2 = A $ $\Rightarrow A^2 = A^2 $ $\Rightarrow A^2 = A $ $\Rightarrow A^2 = A $ $\Rightarrow A^2 = A $ $\Rightarrow A^2 = A^2 $ $\Rightarrow A^2 = A $ $\Rightarrow A^2 = A^2			and $v = \sin^{-1} x$, $\frac{1}{\sqrt{2}} < x < 1 \implies \sin v = x$ (1)		
			V 2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Differentiating with respect to v, we get: $\frac{du}{dv} = 2$ 25					
25					
27 a $to -2 = to -3 = to -2 =$		_	4.0		
27 a $to -2 = to -3 = to -2 =$	25	d	$AB = 6I \Rightarrow B^{-1} = \frac{1}{6}A$		
27 a $tan^{-1} \left(\frac{\sqrt{1+\cos x} + \sqrt{1-\cos x}}{\sqrt{1+\cos x} + \sqrt{1-\cos x}} \right)$ $= tan^{-1} \left(\frac{\sqrt{1+\cos x} + \sqrt{1-\cos x}}{\sqrt{1+\cos x} + \sqrt{1-\cos x}} \right)$ $= tan^{-1} \left(\frac{\sqrt{1+\cos x} + \sqrt{1-\cos x}}{\sqrt{1+\cos x} + \sqrt{1-\cos x}} \right)$ $= tan^{-1} \left(\frac{\cos \frac{x}{2} + \sin \frac{x}{2}}{\sqrt{2\cos \frac{x}{2}} + \sqrt{2\sin \frac{x}{2}}} \right)$ $= tan^{-1} \left(\frac{\cos \frac{x}{2} + \sin \frac{x}{2}}{\sqrt{2\cos \frac{x}{2}} + \sqrt{2\sin \frac{x}{2}}} \right)$ $= \frac{\pi}{4} - \frac{x}{2}$ 28 c $A^2 = 2A$ $\Rightarrow A^2 = 2A $ $\Rightarrow A^2 = 2A $ $\Rightarrow A^2 = 2A $ $\Rightarrow a ^2 = 2^3 A $ $\Rightarrow a ^2 = 3^4 A $ 29 b $f'(x) = 1 - \sin x \Rightarrow f'(x) > 0 \ \forall x \in \mathbb{R}$ $\Rightarrow \text{no value of b exists}$ 30 c $a = b - 2 \text{ and } b > 6$ $\Rightarrow (6, 8) \in \mathbb{R}$ 31 a $f(x) = \int_{-x}^{x} -1, x < 0$ $-1, x \ge 0$ $\Rightarrow f(x) = -1 \ \forall x \in \mathbb{R}$ $\Rightarrow f(x) \text{is continous } \forall x \in \mathbb{R} \text{ as it is a constant function}$ 32 b $kA = \begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$ $\Rightarrow k = -6, a = -4 \text{ and } b = -9$ 33 d Corner points of feasible region $Z = 30x + 50y$ $(5,0)$ $(9,0)$ $(9,0)$ $(9,0)$ $(9,0)$ $(0,3)$ $(0,6)$ 300 Minimum value of Z occurs at two points 34 c $f'(x) = \frac{-2x^2 - 10x + 100}{\sqrt{100 - x^2}}$ $f'(x) = 0 \Rightarrow x = -10 \text{ or } 5, \text{ But } x > 0 \Rightarrow x = 5$ $f''(x) = \frac{-2x^2 - 300x - 1000}{\sqrt{100 - x^2}} \Rightarrow f^*(5) = \frac{-30}{\sqrt{75}} < 0$ $\Rightarrow \text{Maximum area of trapezium is } 75\sqrt{3} \text{ cm}^2 \text{ when } x = 5$ 35 d $(I - A)^3 - 7A = I + A + 3A + 3A - 7A = I$	26	b			
27 a $tan^{-1} \left(\frac{\sqrt{1+\cos x} + \sqrt{1-\cos x}}{\sqrt{1+\cos x} + \sqrt{1-\cos x}} \right)$ $= tan^{-1} \left(\frac{\sqrt{1+\cos x} + \sqrt{1-\cos x}}{\sqrt{1+\cos x} + \sqrt{1-\cos x}} \right)$ $= tan^{-1} \left(\frac{\sqrt{1+\cos x} + \sqrt{1-\cos x}}{\sqrt{1+\cos x} + \sqrt{1-\cos x}} \right)$ $= tan^{-1} \left(\frac{\cos \frac{x}{2} + \sin \frac{x}{2}}{\sqrt{2\cos \frac{x}{2}} + \sqrt{2\sin \frac{x}{2}}} \right)$ $= tan^{-1} \left(\frac{\cos \frac{x}{2} + \sin \frac{x}{2}}{\sqrt{2\cos \frac{x}{2}} + \sqrt{2\sin \frac{x}{2}}} \right)$ $= \frac{\pi}{4} - \frac{x}{2}$ 28 c $A^2 = 2A$ $\Rightarrow A^2 = 2A $ $\Rightarrow A^2 = 2A $ $\Rightarrow A^2 = 2A $ $\Rightarrow a ^2 = 2^3 A $ $\Rightarrow a ^2 = 3^4 A $ 29 b $f'(x) = 1 - \sin x \Rightarrow f'(x) > 0 \ \forall x \in \mathbb{R}$ $\Rightarrow \text{no value of b exists}$ 30 c $a = b - 2 \text{ and } b > 6$ $\Rightarrow (6, 8) \in \mathbb{R}$ 31 a $f(x) = \int_{-x}^{x} -1, x < 0$ $-1, x \ge 0$ $\Rightarrow f(x) = -1 \ \forall x \in \mathbb{R}$ $\Rightarrow f(x) \text{is continous } \forall x \in \mathbb{R} \text{ as it is a constant function}$ 32 b $kA = \begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$ $\Rightarrow k = -6, a = -4 \text{ and } b = -9$ 33 d Corner points of feasible region $Z = 30x + 50y$ $(5,0)$ $(9,0)$ $(9,0)$ $(9,0)$ $(9,0)$ $(0,3)$ $(0,6)$ 300 Minimum value of Z occurs at two points 34 c $f'(x) = \frac{-2x^2 - 10x + 100}{\sqrt{100 - x^2}}$ $f'(x) = 0 \Rightarrow x = -10 \text{ or } 5, \text{ But } x > 0 \Rightarrow x = 5$ $f''(x) = \frac{-2x^2 - 300x - 1000}{\sqrt{100 - x^2}} \Rightarrow f^*(5) = \frac{-30}{\sqrt{75}} < 0$ $\Rightarrow \text{Maximum area of trapezium is } 75\sqrt{3} \text{ cm}^2 \text{ when } x = 5$ 35 d $(I - A)^3 - 7A = I + A + 3A + 3A - 7A = I$			$(\leftarrow \rightarrow		
27					
27			$\Rightarrow f(x)$ is strictly decreasing in $(-2,3)$		
$ = tan^{-1} \left(\frac{\sqrt{2} \cos \frac{2}{3} + \sqrt{2} \cos \frac{2}{3}}{\sqrt{2} \cos \sqrt{2} \sin \frac{2}{3}} \right), \pi < x < \frac{3\pi}{2} $ $ = tan^{-1} \left(\frac{\cos \frac{2}{3} \sin \frac{2}{3}}{\cos \frac{2}{3} + \sin \frac{2}{3}} \right) $ $ = \frac{\pi}{4} - \frac{x}{2} $ $ = \frac{\pi}{4} - \frac{x}{4} $ $ = \pi$	27	а	$t_{cm} = 1 \left(\sqrt{1 + \cos x} + \sqrt{1 - \cos x} \right)$		
			$\frac{\tan \left(\sqrt{1+\cos x}-\sqrt{1-\cos x}\right)}{\sqrt{1+\cos x}}$		
			$= tan^{-1} \left(\frac{-\sqrt{2}\cos^{\frac{\lambda}{2}} + \sqrt{2}\sin^{\frac{\lambda}{2}}}{2} \right) \qquad \pi < \gamma < \frac{3\pi}{2}$		
28			L		
28			$=tan^{-1}\left(\frac{\cos\frac{x}{2}-\sin\frac{x}{2}}{2}\right)$		
$ \begin{vmatrix} x & A^2 = 2A \\ \Rightarrow A ^2 = 2^3 A & \text{as } kA = k^n A \text{ for a matrix of order } n \\ \Rightarrow \text{ either } A = 0 \text{ or } A = 8 \\ \text{But A is non-singular matrix} \\ \therefore A = 8^2 = 64 \\ 29 \qquad b \qquad f'(x) = 1 - \sin x \Rightarrow f'(x) > 0 \ \forall x \in R \\ \Rightarrow \text{ no value of b exists} $ $ 30 \qquad c \qquad a = b - 2 \text{ and } b > 6 \\ \Rightarrow (6, 8) \in R $ $ 31 \qquad a \qquad f(x) = \begin{cases} \frac{x}{-x} = -1, & x < 0 \\ -1, & x \ge 0 \end{cases} \\ \Rightarrow f(x) \text{ is continous } \forall x \in R \text{ as it is a constant function} $ $ 32 \qquad b \qquad kA = \begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix} \\ \Rightarrow k = -6, a = -4 \text{ and } b = -9 $ $ 33 \qquad d \qquad \text{Corner points of feasible region} \qquad Z = 30x + 50y \\ (5,0) \qquad \qquad (5,0)$			` 2 2'		
$ \begin{vmatrix} x & A^2 = 2A \\ \Rightarrow A ^2 = 2^3 A & \text{as } kA = k^n A \text{ for a matrix of order } n \\ \Rightarrow \text{ either } A = 0 \text{ or } A = 8 \\ \text{But A is non-singular matrix} \\ \therefore A = 8^2 = 64 \\ 29 \qquad b \qquad f'(x) = 1 - \sin x \Rightarrow f'(x) > 0 \ \forall x \in R \\ \Rightarrow \text{ no value of b exists} $ $ 30 \qquad c \qquad a = b - 2 \text{ and } b > 6 \\ \Rightarrow (6, 8) \in R $ $ 31 \qquad a \qquad f(x) = \begin{cases} \frac{x}{-x} = -1, & x < 0 \\ -1, & x \ge 0 \end{cases} \\ \Rightarrow f(x) \text{ is continous } \forall x \in R \text{ as it is a constant function} $ $ 32 \qquad b \qquad kA = \begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix} \\ \Rightarrow k = -6, a = -4 \text{ and } b = -9 $ $ 33 \qquad d \qquad \text{Corner points of feasible region} \qquad Z = 30x + 50y \\ (5,0) \qquad \qquad (5,0)$			$=\frac{n}{4}-\frac{\lambda}{2}$		
$ \Rightarrow A ^2 = 2^3 A \text{as } kA = k^n A \text{ for a matrix of order } n \\ \Rightarrow \text{ either } A = 0 \text{ or } A = 8 \\ \text{But } A \text{ is non-singular matrix} \\ \therefore A = 8^2 = 64 \\ \textbf{29} \textbf{b} f'(x) = 1 - \sin x \Rightarrow f'(x) > 0 \ \forall x \in R \\ \Rightarrow \text{ no value of b exists} \\ \textbf{30} \textbf{c} a = b - 2 \text{ and } b > 6 \\ \Rightarrow (6, 8) \in R \\ \textbf{31} \textbf{a} f(x) = \begin{cases} \frac{x}{-x} = -1, & x < 0 \\ -1, & x \ge 0 \end{cases} \\ \Rightarrow f(x) = -1 \ \forall x \in R \\ \Rightarrow f(x) \text{ is continous } \forall x \in R \text{ as it is a constant function} \end{cases} $ $\textbf{32} \textbf{b} kA = \begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix} \\ \Rightarrow k = -6, a = -4 \text{ and } b = -9 \\ \textbf{33} \textbf{d} \text{Corner points of feasible region} Z = 30x + 50y \\ (5,0) & 150 \\ (9,0) & 270 \\ (0,3) & 150 \\ (0,6) & 300 \end{cases} $ $\textbf{Minimum value of } Z \text{ occurs at two points} $ $\textbf{34} \textbf{c} f'(x) = \frac{-2x^2 - 10x + 100}{\sqrt{100 - x^2}} \\ f'(x) = 0 \Rightarrow x = -10 \text{ or } 5, \text{ But } x > 0 \Rightarrow x = 5 \\ f'''(x) = \frac{2x^3 - 300x - 1000}{(100 - x)^3} \Rightarrow f''(5) = \frac{-30}{\sqrt{75}} < 0 \\ \Rightarrow \text{ Maximum area of trapezium is } 75\sqrt{3} cm^2 \text{ when } x = 5 \\ \textbf{35} \textbf{d} (I - A)^3 - 7A = I + A + 3A + 3A - 7A = I \end{cases}$	28	С	$A^2 = 2A$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\Rightarrow A^2 = 2A $		
But A is non-singular matrix $\therefore A = 8^2 = 64$ 29			$\Rightarrow A ^2 = 2^3 A $ as $ kA = k^n A $ for a matrix of order n		
29 b $f'(x) = 1 - \sin x \Rightarrow f'(x) > 0 \ \forall x \in R$ \Rightarrow no value of b exists 30 c $a = b - 2$ and $b > 6$ $\Rightarrow (6,8) \in R$ 31 a $\begin{cases} f(x) = \begin{cases} \frac{x}{-x} = -1, & x < 0 \\ -1, & x \ge 0 \end{cases} \\ \Rightarrow f(x) = (-1) \forall x \in R \\ \Rightarrow f(x) \text{is continous} \ \forall x \in R \text{ as it is a constant function} \end{cases}$ 32 b $kA = \begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$ $\Rightarrow k = -6, a = -4 \text{ and } b = -9$ 33 d Corner points of feasible region $Z = 30x + 50y$ (5,0) $150(9,0)$ $270(0,3)$ $150(0,6)$ $300Minimum value of Z = 30x + 50y(5,0)$ $150(5,0)$ $150(5,0)$ $150(5,0)$ $150(5,0)$ $150(5,0)$ $150(5,0)$ $150(5,0)$ $150(5,0)$ $150(5,0)$ $150(5,0)$ $150(5,0)$ $150(5,0)$ $150(5,0)$ $150(5,0)$ $150(5,0)$ $150(5,0)$ $150(5,0)$ $150(5,0)$ $150(5,0)$ $(5,0)$			\Rightarrow either $ A = 0$ or $ A = 8$		
30					
30			$: A = 8^2 = 64$		
30	29	b			
31 a $f(x) = \begin{cases} \frac{x}{-x} = -1, & x < 0 \\ -1, & x \ge 0 \\ \Rightarrow f(x) = -1 \forall x \in R \\ \Rightarrow f(x) \text{ is continous } \forall x \in R \text{ as it is a constant function} \end{cases}$ 32 b $kA = \begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix} \\ \Rightarrow k = -6, a = -4 \text{ and } b = -9 \end{cases}$ 33 d Corner points of feasible region $Z = 30x + 50y$ (5,0) 150 (9,0) 270 (0,3) 150 (0,6) 300 Minimum value of Zoccurs at two points 34 c $f'(x) = \frac{-2x^2 - 10x + 100}{\sqrt{100 - x^2}} f'(x) = 0 \Rightarrow x = -10 \text{ or } 5, \text{ But } x > 0 \Rightarrow x = 5 \\ f''(x) = \frac{2x^3 - 300x - 1000}{(100 - x)^2} \Rightarrow f''(5) = \frac{-30}{\sqrt{75}} < 0 \\ \Rightarrow \text{ Maximum area of trapezium is } 75\sqrt{3} \text{ cm}^2 \text{ when } x = 5 \end{cases}$ 35 d $(I - A)^3 - 7A = I + A + 3A + 3A - 7A = I$					
31 a $f(x) = \begin{cases} \frac{x}{-x} = -1 \ , & x < 0 \\ -1 \ , & x \ge 0 \end{cases}$ $\Rightarrow f(x) = -1 \forall x \in R$ $\Rightarrow f(x) is continous \forall x \in R \text{ as it is a constant function}$ 32 b $kA = \begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$ $\Rightarrow k = -6, a = -4 \text{ and } b = -9$ 33 d Corner points of feasible region $(5,0) \qquad 150 \qquad (9,0) \qquad 270 \qquad (0,3) \qquad 150 \qquad (0,6) \qquad 300 \qquad (0,6) \qquad (0,6) \qquad 300 \qquad (0,6) $	30	С			
32 b $kA = \begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$ $\Rightarrow k = -6, a = -4 \text{ and } b = -9$ 33 d Corner points of feasible region $z = 30x + 50y$ z = 30x + 50y z = 30x	24	_	\Rightarrow (6,8) \in R		
32 b $kA = \begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$ $\Rightarrow k = -6, a = -4 \text{ and } b = -9$ 33 d Corner points of feasible region $z = 30x + 50y$ z = 30x + 50y z = 30x	31	а	$f(x) = \begin{cases} \frac{x}{-x} = -1, & x < 0 \end{cases}$		
32 b $kA = \begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$ $\Rightarrow k = -6, a = -4 \text{ and } b = -9$ 33 d Corner points of feasible region $Z = 30x + 50y$ (5,0) $(5,0)$ $(5,0)$ $(5,0)$ $(5,0)$ $(5,0)$ $(5,0)$ $(0,3)$ $(0,6)$					
32					
33 d Corner points of feasible region $Z = 30x + 50y$ (5,0) $(5,0)$					
33 d Corner points of feasible region $Z = 30x + 50y$ (5,0) $(5,0)$	32	b	$kA = \begin{bmatrix} 0 & 2k \\ 0 & 3a \end{bmatrix}$		
33 d Corner points of feasible region $Z = 30x + 50y$ (5,0) $(9,0)$ $270(0,3)$ $150(0,6)$ $300Minimum value of Z occurs at two points 34 c f'(x) = \frac{-2x^2 - 10x + 100}{\sqrt{100 - x^2}}f'(x) = 0 \Rightarrow x = -10 \text{ or } 5, But x > 0 \Rightarrow x = 5f''(x) = \frac{2x^3 - 300x - 1000}{(100 - x)^{\frac{3}{2}}} \Rightarrow f''(5) = \frac{-30}{\sqrt{75}} < 0\Rightarrow Maximum area of trapezium is 75\sqrt{3} cm^2 when x = 5$					
$(5,0) \qquad 150 \qquad 270 \qquad (0,3) \qquad 150 \qquad (0,6) \qquad 300 \qquad 150 \qquad 300 \qquad Minimum value of Zoccurs at two points$ $34 \qquad \mathbf{c} \qquad f'(x) = \frac{-2x^2 - 10x + 100}{\sqrt{100 - x^2}} \qquad f'(x) = 0 \Rightarrow x = -10 \text{ or } 5 \text{ , But } x > 0 \Rightarrow x = 5 \qquad f''(x) = \frac{2x^3 - 300x - 1000}{(100 - x)^{\frac{3}{2}}} \Rightarrow f''(5) = \frac{-30}{\sqrt{75}} < 0 \qquad \Rightarrow \text{Maximum area of trapezium is } 75\sqrt{3} cm^2 \text{ when } x = 5$ $35 \qquad \mathbf{d} \qquad (I - A)^3 - 7A = I + A + 3A + 3A - 7A = I$	33	4			
$(9,0) \qquad 270 \\ (0,3) \qquad 150 \\ 300 \qquad 300$ Minimum value of Zoccurs at two points $f'(x) = \frac{-2x^2 - 10x + 100}{\sqrt{100 - x^2}}$ $f'(x) = 0 \Rightarrow x = -10 \text{ or } 5 \text{ , But } x > 0 \Rightarrow x = 5$ $f''(x) = \frac{2x^3 - 300x - 1000}{(100 - x)^{\frac{3}{2}}} \Rightarrow f''(5) = \frac{-30}{\sqrt{75}} < 0$ $\Rightarrow \text{Maximum area of trapezium is } 75\sqrt{3} cm^2 \text{ when } x = 5$ $(I - A)^3 - 7A = I + A + 3A + 3A - 7A = I$	33	u			
(0,6) 300 Minimum value of Zoccurs at two points 34 c $f'(x) = \frac{-2x^2 - 10x + 100}{\sqrt{100 - x^2}}$ $f'(x) = 0 \Rightarrow x = -10 \text{ or } 5, \text{ But } x > 0 \Rightarrow x = 5$ $f''(x) = \frac{2x^3 - 300x - 1000}{(100 - x)^{\frac{3}{2}}} \Rightarrow f''(5) = \frac{-30}{\sqrt{75}} < 0$ $\Rightarrow \text{Maximum area of trapezium is } 75\sqrt{3} cm^2 \text{ when } x = 5$ 35 d $(I - A)^3 - 7A = I + A + 3A + 3A - 7A = I$			(0.3)		
Minimum value of Zoccurs at two points $f'(x) = \frac{-2x^2 - 10x + 100}{\sqrt{100 - x^2}}$ $f'(x) = 0 \Rightarrow x = -10 \text{ or } 5 \text{ , But } x > 0 \Rightarrow x = 5$ $f''(x) = \frac{2x^3 - 300x - 1000}{(100 - x)^{\frac{3}{2}}} \Rightarrow f''(5) = \frac{-30}{\sqrt{75}} < 0$ $\Rightarrow \text{Maximum area of trapezium is } 75\sqrt{3} cm^2 \text{ when } x = 5$ $(I - A)^3 - 7A = I + A + 3A + 3A - 7A = I$					
34 c $f'(x) = \frac{-2x^2 - 10x + 100}{\sqrt{100 - x^2}}$ $f'(x) = 0 \Rightarrow x = -10 \text{ or } 5$, But $x > 0 \Rightarrow x = 5$ $f''(x) = \frac{2x^3 - 300x - 1000}{(100 - x)^{\frac{3}{2}}} \Rightarrow f''(5) = \frac{-30}{\sqrt{75}} < 0$ \Rightarrow Maximum area of trapezium is $75\sqrt{3}$ cm ² when $x = 5$ 35 d $(I - A)^3 - 7A = I + A + 3A + 3A - 7A = I$					
$f'(x) = 0 \Rightarrow x = -10 \text{ or } 5, \text{ But } x > 0 \Rightarrow x = 5$ $f''(x) = \frac{2x^3 - 300x - 1000}{(100 - x)^{\frac{3}{2}}} \Rightarrow f''(5) = \frac{-30}{\sqrt{75}} < 0$ $\Rightarrow \text{Maximum area of trapezium is } 75\sqrt{3} cm^2 \text{ when } x = 5$ $(I - A)^3 - 7A = I + A + 3A + 3A - 7A = I$	34	С			
$f''(x) = \frac{2x^3 - 300x - 1000}{(100 - x)^{\frac{3}{2}}} \Rightarrow f''(5) = \frac{-30}{\sqrt{75}} < 0$ $\Rightarrow \text{Maximum area of trapezium is } 75\sqrt{3} cm^2 \text{ when } x = 5$ $(I - A)^3 - 7A = I + A + 3A + 3A - 7A = I$					
$\Rightarrow \text{Maximum area of trapezium is } 75\sqrt{3} cm^2 \text{ when } x = 5$ $ \textbf{35} \textbf{d} (I-A)^3 - 7A = I + A + 3A + 3A - 7A = I$			$f'(x) = 0 \Rightarrow x = -10 \text{ or } 5$, But $x > 0 \Rightarrow x = 5$		
$\Rightarrow \text{Maximum area of trapezium is } 75\sqrt{3} cm^2 \text{ when } x = 5$ $ \textbf{35} \textbf{d} (I-A)^3 - 7A = I + A + 3A + 3A - 7A = I$			$\int f''(x) = \frac{2x^2 - 300x - 1000}{\frac{3}{2}} \Rightarrow f''(5) = \frac{-30}{\sqrt{75}} < 0$		
35 d $(I-A)^3 - 7A = I + A + 3A + 3A - 7A = I$					
	25	لہ			
$\frac{30}{2}$			$ (I - A)^{\circ} - /A = I + A + 3A + 3A - /A = I $ $ -\pi _{\bullet} \pi$		
	30	С	$\left \frac{1}{2} \right < y < \frac{1}{2}$		

37	b	As every per-image $x \in A$ has a unique image $y \in B$
		\Rightarrow f is injective function
38	b	$ A = 7$, $adjA = \begin{bmatrix} 2 & -2 \\ 1 & 3 \end{bmatrix}$
		-1 3 -
		$\therefore 14A^{-1} = \begin{bmatrix} 4 & -2 \\ 2 & 6 \end{bmatrix}$
39	b	$y = x^3 - 11x + 5 \Rightarrow \frac{dy}{dx} = 3x^2 - 11$
		Slope of line $y = x - 11$ is $1 \Rightarrow 3x^2 - 11 = 1 \Rightarrow x = \pm 2$
		∴ point is (2, -9) as (-2, 19) does not satisfy given line
40	С	$A^2 = 3I$
		$\Rightarrow \begin{vmatrix} \alpha^2 + \beta r & 0 \\ 0 & \beta r + \alpha^2 \end{vmatrix} = \begin{vmatrix} 3 & 0 \\ 0 & 3 \end{vmatrix} \Rightarrow 3 - \alpha^2 - \beta r = 0$
		$\Rightarrow \begin{bmatrix} \alpha^2 + \beta r & 0 \\ 0 & \beta r + \alpha^2 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \Rightarrow 3 - \alpha^2 - \beta r = 0$ Section C
41	а	As Z is maximum at (30, 30) and (0, 40)
		$\Rightarrow 30a + 30b = 40b \Rightarrow b - 3a = 0$ $y = mx + 1 \dots (1)$ and $y^2 = 4x \dots (2)$
42	b	
		Substituting (1) in (2): $(mx + 1)^2 = 4x$
		$\Rightarrow m^2 x^2 + (2m - 4)x + 1 = 0 \dots (3)$ As line is tangent to the curve
		⇒ line touches the curve at only one point
		$\Rightarrow (2m-4)^2 - 4m^2 = 0 \Rightarrow m = 1$
43	С	Let $f(x) = [x(x-1)+1]^{\frac{1}{3}}, 0 \le x \le 1$
		$f'(x) = \frac{2x-1}{x} \text{let } f'(x) = 0 \Rightarrow x = \frac{1}{x} \in [0, 1]$
		$f'(x) = \frac{2x-1}{3(x^2-x+1)^{\frac{2}{3}}} \text{let } f'(x) = 0 \Rightarrow x = \frac{1}{2} \in [0,1]$
		$f(o) = 1, f\left(\frac{1}{2}\right) = \left(\frac{3}{4}\right)^{\frac{1}{3}}$ and $f(1) = 1$
		\=/ \\\:/
44	b	\therefore Maximum value of $f(x)$ is 1 Feasible region is bounded in the first quadrant
45	d d	$ A = 2 + 2\sin^2\theta$
	-	$\begin{vmatrix} As - 1 \le \sin\theta \le 1, \forall 0 \le \theta \le 2\pi \end{vmatrix}$
		$\Rightarrow 2 \le 2 + 2\sin^2\theta \le 4 \Rightarrow A \in [2,4]$
46	d	Fuel cost= $k(speed)^2$
		$\Rightarrow 48 = \text{k.} 16^2 \Rightarrow \text{k} = \frac{3}{16}$
47	b	Total cost of running train (let C) = $\frac{3}{16}v^2t + 1200t$
		Distance covered = $500 \text{km} \Rightarrow \text{time} = \frac{500}{n} hrs$
		ν
		Total cost of running train 500 km = $\frac{3}{16}v^2 \left(\frac{500}{v}\right) + 1200 \left(\frac{500}{v}\right)$
		$\Rightarrow C = \frac{375}{4}v + \frac{600000}{v}$ $\frac{dC}{dv} = \frac{375}{4} - \frac{600000}{v^2}$
48	С	$\frac{dC}{dr} = \frac{375}{4} - \frac{600000}{r^2}$
		Let $\frac{dc}{dt} = 0 \implies v = 80 \text{ km/h}$
49	С	Fuel cost for running 500 km $\frac{375}{4}v = \frac{375}{4} \times 80 = Rs.7500/-$ Total cost for running 500 km $= \frac{375}{4}v + \frac{600000}{v}$
50	d	Tatalana (()) () () () () () () () (
	u	1 otal cost for running 500 km = $\frac{1}{4}v + \frac{3}{v}$
		$=\frac{375\times80}{4}+\frac{600000}{80}=Rs.15000/-$

